

SYDNEY DECORATIVE CONCRETORS WAREHOUSE PTY LTD

Chemwatch: **5075-69** Version No: **4.1.1.1**

Safety Data Sheet according to WHS and ADG requirements

Chemwatch Hazard Alert Code: 2

Issue Date: **27/06/2017** Print Date: **06/02/2018** L.GHS.AUS.EN

SECTION 1 IDENTIFICATION OF THE SUBSTANCE / MIXTURE AND OF THE COMPANY / UNDERTAKING

Product Identifier

Product name	Solvent Plus	
Synonyms	concrete sealer rejuvenator cleaner cleaning solvent	
Proper shipping name	FLAMMABLE LIQUID, N.O.S. (contains xylene and naphtha petroleum, light aromatic solvent)	
Other means of identification	Not Available	

Relevant identified uses of the substance or mixture and uses advised against

Relevant identified uses

The use of a quantity of material in an unventilated or confined space may result in increased exposure and an irritating atmosphere developing. Before starting consider control of exposure by mechanical ventilation.

Used to rejuvenate damaged or marked sealer.

Details of the supplier of the safety data sheet

Registered company name	SYDNEY DECORATIVE CONCRETORS WAREHOUSE PTY LTD	
Address	U2/1 Hargraves Place NSW 2164 Australia	
Telephone	02 97564688	
Fax	02 9756 4866	
Website	www.concretorswarehouse.com	
Email	sydney_concretors@bigpond.com	

Emergency telephone number

Association / Organisation	Company Mobile
Emergency telephone numbers	0409 996 899
Other emergency telephone numbers	Not Available

SECTION 2 HAZARDS IDENTIFICATION

Classification of the substance or mixture

HAZARDOUS CHEMICAL. DANGEROUS GOODS. According to the WHS Regulations and the ADG Code.

CHEMWATCH HAZARD RATINGS

	Min	Max :
Flammability	2	
Toxicity	2	0 = Minimum
Body Contact	2	1 = Low 2 = Moderate
Reactivity	1	3 = High
Chronic	1	4 = Extreme

Poisons Schedule	S6	
Classification [1]	Flammable Liquid Category 3, Acute Toxicity (Oral) Category 4, Acute Toxicity (Dermal) Category 4, Acute Toxicity (Inhalation) Category 4, Skin Corrosion/Irritation Category 2, Eye Irritation Category 2A, Specific target organ toxicity - single exposure Category 3 (narcotic effects), Aspiration Hazard Category 1, Acute Aquatic Hazard Category 2, Chronic Aquatic Hazard Category 2	
Legend:	1. Classified by Chemwatch; 2. Classification drawn from HSIS; 3. Classification drawn from EC Directive 1272/2008 - Annex VI	

Label elements

Hazard pictogram(s)

SIGNAL WORD

DANGER

Issue Date: 27/06/2017 Print Date: 06/02/2018

H226	Flammable liquid and vapour.
H302	Harmful if swallowed.
H312	Harmful in contact with skin.
H332	Harmful if inhaled.
H315	Causes skin irritation.
H319	Causes serious eye irritation.
H336	May cause drowsiness or dizziness.
H304	May be fatal if swallowed and enters airways.
H411	Toxic to aquatic life with long lasting effects.
AUH066	Repeated exposure may cause skin dryness and cracking.
Precautionary statement(s) Prevention	
P210	Keep away from heat/sparks/open flames/hot surfaces No smoking.
P271	Use only outdoors or in a well-ventilated area.
P240	Ground/bond container and receiving equipment.

P210	Keep away from heat/sparks/open flames/hot surfaces No smoking.	
P271	Jse only outdoors or in a well-ventilated area.	
P240	Ground/bond container and receiving equipment.	
P241	Use explosion-proof electrical/ventilating/lighting/intrinsically safe equipment.	

Precautionary statement(s) Response

P301+P310	IF SWALLOWED: Immediately call a POISON CENTER or doctor/physician.	
P331	Do NOT induce vomiting.	
P362	Take off contaminated clothing and wash before reuse.	
P370+P378 In case of fire: Use alcohol resistant foam or normal protein foam for extinction.		

Precautionary statement(s) Storage

P403+P235	Store in a well-ventilated place. Keep cool.	
P405	Store locked up.	

Precautionary statement(s) Disposal

P501	Dispose of contents/container in accordance with local regulations.
------	---

SECTION 3 COMPOSITION / INFORMATION ON INGREDIENTS

Substances

See section below for composition of Mixtures

Mixtures

CAS No	%[weight]	Name
1330-20-7	30-60	xylene
64742-95-6.	30-60	naphtha petroleum, light aromatic solvent
111-76-2	10-30	ethylene glycol monobutyl ether
		NOTE: Manufacturer has supplied full ingredient
		information to allow CHEMWATCH assessment.

SECTION 4 FIRST AID MEASURES

Description of first aid measures			
Eye Contact	If this product comes in contact with the eyes: • Wash out immediately with fresh running water. • Ensure complete irrigation of the eye by keeping eyelids apart and away from eye and moving the eyelids by occasionally lifting the upper and lower lids • Seek medical attention without delay; if pain persists or recurs seek medical attention. • Removal of contact lenses after an eye injury should only be undertaken by skilled personnel.		
Skin Contact	If skin contact occurs: Immediately remove all contaminated clothing, including footwear. Flush skin and hair with running water (and soap if available). Seek medical attention in event of irritation.		
Inhalation	 If furnes or combustion products are inhaled remove from contaminated area. Lay patient down. Keep warm and rested. Prostheses such as false teeth, which may block airway, should be removed, where possible, prior to initiating first aid procedures. Apply artificial respiration if not breathing, preferably with a demand valve resuscitator, bag-valve mask device, or pocket mask as trained. Perform CPR if necessary. Transport to hospital, or doctor, without delay. 		
Ingestion	 If swallowed do NOT induce vomiting. If vomiting occurs, lean patient forward or place on left side (head-down position, if possible) to maintain open airway and prevent aspiration. Observe the patient carefully. Never give liquid to a person showing signs of being sleepy or with reduced awareness; i.e. becoming unconscious. Give water to rinse out mouth, then provide liquid slowly and as much as casualty can comfortably drink. Seek medical advice. 		

Issue Date: 27/06/2017
Print Date: 06/02/2018

- Avoid giving milk or oils
- Avoid giving alcohol.

Indication of any immediate medical attention and special treatment needed

Any material aspirated during vomiting may produce lung injury. Therefore emesis should not be induced mechanically or pharmacologically. Mechanical means should be used if it is considered necessary to evacuate the stomach contents; these include gastric lavage after endotracheal intubation. If spontaneous vomiting has occurred after ingestion, the patient should be monitored for difficult breathing, as adverse effects of aspiration into the lungs may be delayed up to 48 hours.

Followed acute or short term repeated exposures to ethylene glycol monoalkyl ethers and their acetates:

- ▶ Hepatic metabolism produces ethylene glycol as a metabolite.
- ▶ Clinical presentation, following severe intoxication, resembles that of ethylene glycol exposures
- ▶ Monitoring the urinary excretion of the alkoxyacetic acid metabolites may be a useful indication of exposure.

[Ellenhorn and Barceloux: Medical Toxicology]

For acute or short term repeated exposures to xylene:

- Gastro-intestinal absorption is significant with ingestions. For ingestions exceeding 1-2 ml (xylene)/kg, intubation and lavage with cuffed endotracheal tube is recommended. The use of charcoal and cathartics is equivocal.
- Pulmonary absorption is rapid with about 60-65% retained at rest.
- ▶ Primary threat to life from ingestion and/or inhalation, is respiratory failure.
- Patients should be quickly evaluated for signs of respiratory distress (e.g. cyanosis, tachypnoea, intercostal retraction, obtundation) and given oxygen. Patients with inadequate tidal volumes or poor arterial blood gases (pO2 < 50 mm Hg or pCO2 > 50 mm Hg) should be intubated.
- Arrhythmias complicate some hydrocarbon ingestion and/or inhalation and electrocardiographic evidence of myocardial injury has been reported; intravenous lines and cardiac monitors should be established in obviously symptomatic patients. The lungs excrete inhaled solvents, so that hyperventilation improves clearance.
- A chest x-ray should be taken immediately after stabilisation of breathing and circulation to document aspiration and detect the presence of pneumothorax.
- Epinephrine (adrenalin) is not recommended for treatment of bronchospasm because of potential myocardial sensitisation to catecholamines. Inhaled cardioselective bronchodilators (e.g. Alupent, Salbutamol) are the preferred agents, with aminophylline a second choice.

BIOLOGICAL EXPOSURE INDEX - BEI

These represent the determinants observed in specimens collected from a healthy worker exposed at the Exposure Standard (ES or TLV):

Determinant Index Sampling Time Comments

Methylhippu-ric acids in urine 1.5 gm/gm creatinine End of shift 2 mg/min Last 4 hrs of shift

SECTION 5 FIREFIGHTING MEASURES

Extinguishing media

- Water spray or fog.
- ▶ Alcohol stable foam
- Dry chemical powder.
- Carbon dioxide.

Do not use a water jet to fight fire.

Special hazards arising from the substrate or mixture

Fire Incompatibility	▶ Avoid contamination with oxidising agents i.e. nitrates, oxidising acids, chlorine bleaches, pool chlorine etc. as ignition may result
Advice for firefighters	
Fire Fighting	 Alert Fire Brigade and tell them location and nature of hazard. May be violently or explosively reactive. Wear breathing apparatus plus protective gloves. Prevent, by any means available, spillage from entering drains or water course.
Fire/Explosion Hazard	Liquid and vapour are flammable. Moderate fire hazard when exposed to heat or flame. Vapour forms an explosive mixture with air. Moderate explosion hazard when exposed to heat or flame. Combustion products include: carbon monoxide (CO) carbon dioxide (CO2) other pyrolysis products typical of burning organic material. Contains low boiling substance: Closed containers may rupture due to pressure buildup under fire conditions.

SECTION 6 ACCIDENTAL RELEASE MEASURES

HAZCHEM

Personal precautions, protective equipment and emergency procedures

•3Y

See section 8

Environmental precautions

See section 12

Methods and material for containment and cleaning up

Minor Spills

► Remove all ignition sources.

May emit clouds of acrid smoke

- ► Clean up all spills immediately.
- Avoid breathing vapours and contact with skin and eyes.
- ► Control personal contact with the substance, by using protective equipment.

Chemwatch: 5075-69 Page 4 of 12

Issue Date: 27/06/2017 Version No: 4.1.1.1 Print Date: 06/02/2018 Solvent Plus

Chemical Class: aromatic hydrocarbons

For release onto land: recommended sorbents listed in order of priority.

SORBENT TYPE	RANK	APPLICATION	COLLECTION	LIMITATIONS
-----------------	------	-------------	------------	-------------

LAND SPILL - SMALL

Feathers - pillow	1	throw	pitchfork	DGC, RT
cross-linked polymer - particulate		shovel	shovel	R,W,SS
cross-linked polymer- pillow		throw	pitchfork	R, DGC, RT
sorbent clay - particulate		shovel	shovel	R, I, P,
treated clay/ treated natural organic - particulate		shovel	shovel	R, I
wood fibre - pillow	4	throw	pitchfork	R, P, DGC, RT

LAND SPILL - MEDIUM

Major Spills

cross-linked polymer -particulate		blower	skiploader	R, W, SS
treated clay/ treated natural organic - particulate		blower	skiploader	R, I
sorbent clay - particulate	3	blower	skiploader	R, I, P
polypropylene - particulate	3	blower	skiploader	W, SS, DGC
feathers - pillow	3	throw	skiploader	DGC, RT
expanded mineral - particulate	4	blower	skiploader	R, I, W, P, DGC

Legend

DGC: Not effective where ground cover is dense

R; Not reusable

I: Not incinerable

P: Effectiveness reduced when rainy

RT:Not effective where terrain is rugged

SS: Not for use within environmentally sensitive sites

W: Effectiveness reduced when windy

Reference: Sorbents for Liquid Hazardous Substance Cleanup and Control;

R.W Melvold et al: Pollution Technology Review No. 150: Noyes Data Corporation 1988

- ▶ Clear area of personnel and move upwind.
- ▶ Alert Fire Brigade and tell them location and nature of hazard.
- May be violently or explosively reactive.
- Wear breathing apparatus plus protective gloves.

Personal Protective Equipment advice is contained in Section 8 of the SDS.

SECTION 7 HANDLING AND STORAGE

Precautions for safe handling

- Containers, even those that have been emptied, may contain explosive vapours.
- ▶ Do NOT cut, drill, grind, weld or perform similar operations on or near containers

Contains low boiling substance:

Storage in sealed containers may result in pressure buildup causing violent rupture of containers not rated appropriately.

- ▶ Check for bulging containers.
- Vent periodically
 - ▶ Always release caps or seals slowly to ensure slow dissipation of vapours
 - ▶ DO NOT allow clothing wet with material to stay in contact with skin
 - Electrostatic discharge may be generated during pumping this may result in fire.
 - ► Ensure electrical continuity by bonding and grounding (earthing) all equipment.
 - Restrict line velocity during pumping in order to avoid generation of electrostatic discharge (<=1 m/sec until fill pipe submerged to twice its diameter, then \leq 7 m/sec).
 - Avoid splash filling.
 - Avoid all personal contact, including inhalation.
 - ▶ Wear protective clothing when risk of overexposure occurs.
 - ▶ Use in a well-ventilated area.
 - Prevent concentration in hollows and sumps.

Other information

Suitable container

Safe handling

- ▶ Store in original containers in approved flammable liquid storage area.
- Store away from incompatible materials in a cool, dry, well-ventilated area.
- DO NOT store in pits, depressions, basements or an eas where vapours may be trapped.
- ▶ No smoking, naked lights, heat or ignition sources.

Conditions for safe storage, including any incompatibilities

▶ Packing as supplied by manufacturer.

- ▶ Plastic containers may only be used if approved for flammable liquid.
- Check that containers are clearly labelled and free from leaks.
- For low viscosity materials (i): Drums and jerry cans must be of the non-removable head type. (ii): Where a can is to be used as an inner package, the can must have a screwed enclosure.
- ▶ For materials with a viscosity of at least 2680 cSt. (23 deg. C)
- ► For manufactured product having a viscosity of at least 250 cSt.

Storage incompatibility

► Avoid reaction with oxidising agents

SECTION 8 EXPOSURE CONTROLS / PERSONAL PROTECTION

Issue Date: 27/06/2017 Print Date: 06/02/2018

Control parameters

OCCUPATIONAL EXPOSURE LIMITS (OEL)

INGREDIENT DATA

Source	Ingredient	Material name	TWA	STEL	Peak	Notes
Australia Exposure Standards	xylene	Xylene (o-, m-, p- isomers)	350 mg/m3 / 80 ppm	655 mg/m3 / 150 ppm	Not Available	Not Available
Australia Exposure Standards	ethylene glycol monobutyl ether	2-Butoxyethanol	96.9 mg/m3 / 20 ppm	242 mg/m3 / 50 ppm	Not Available	Not Available

EMERGENCY LIMITS

Ingredient	Material name	TEEL-1	TEEL-2	TEEL-3
xylene	Xylenes	Not Available	Not Available	Not Available
ethylene glycol monobutyl ether	Butoxyethanol, 2-; (Glycol ether EB)	60 ppm	120 ppm	700 ppm

Ingredient	Original IDLH	Revised IDLH
xylene	900 ppm	Not Available
naphtha petroleum, light aromatic solvent	Not Available	Not Available
ethylene glycol monobutyl ether	700 ppm	Not Available

MATERIAL DATA

Odour threshold: 0.25 ppm.

The TLV-TWA is protective against ocular and upper respiratory tract irritation and is recommended for bulk handling of gasoline based on calculations of hydrocarbon content of gasoline vapour. A STEL is recommended to prevent mucous membrane and ocular irritation and prevention of acute depression of the central nervous system. Because of the wide variation in molecular weights of its components, the conversion of ppm to mg/m3 is approximate.

For ethylene glycol monobutyl ether (2-butoxyethanol)

Other protection

Odour Threshold Value: 0.10 ppm (detection), 0.35 ppm (recognition)

Although rats appear to be more susceptible than other animals anaemia is not uncommon amongst humans following exposure. The TLV reflects the need to maintain exposures below levels found to cause blood changes in experimental animals. It is concluded that this limit will reduce the significant risk of irritation, haematologic effects and other systemic effects observed in humans and animals exposed to higher vapour concentrations. The toxic effects typical of some other glycol ethers (pancytopenia, testis atrophy and teratogenic effects) are not found with this substance. for xylenes:

IDLH Level: 900 ppm

Odour Threshold Value: 20 ppm (detection), 40 ppm (recognition)

NOTE: Detector tubes for o-xylene, measuring in excess of 10 ppm, are available commercially. (m-xylene and p-xylene give almost the same response).

PVC protective suit may be required if exposure severe.

Eyewash unit.

Xylene vapour is an irritant to the eyes, mucous membranes and skin and causes narcosis at high concentrations. Exposure to doses sufficiently high to produce intoxication and unconsciousness also produces transient liver and kidney toxicity.

NOTE M: The classification as a carcinogen need not apply if it can be shown that the substance contains less than 0.005% w/w benzo[a]pyrene (EINECS No 200-028-5). This note applies only to certain complex oil-derived substances in Annex IV.

European Union (EU) List of harmonised classification and labelling hazardous substances, Table 3.1, Annex VI, Regulation (EC) No 1272/2008 (CLP) - up to the latest ATP

NOTE P: The classification as a carcinogen need not apply if it can be shown that the substance contains less than 0.01% w/w benzene (EINECS No 200-753-7). Note E shall also apply when the substance is classified as a carcinogen. This note applies only to certain complex oil-derived substances in Annex VI.

European Union (EU) List of harmonised classification and labelling hazardous substances, Table 3.1, Annex VI, Regulation (EC) No 1272/2008 (CLP) - up to the latest ATP

Exposure controls

CARE: Use of a quantity of this material in confined space or poorly ventilated area, where rapid build up of concentrated atmosphere may occur, could require increased ventilation and/or protective gear Engineering controls are used to remove a hazard or place a barrier between the worker and the hazard. Well-designed engineering controls can be Appropriate engineering highly effective in protecting workers and will typically be independent of worker interactions to provide this high level of protection. controls The basic types of engineering controls are: Process controls which involve changing the way a job activity or process is done to reduce the risk. Enclosure and/or isolation of emission source which keeps a selected hazard "physically" away from the worker and ventilation that strategically "adds" and "removes" air in the work environment. Personal protection Safety glasses with side shields. Chemical goggles Eye and face protection Contact lenses may pose a special hazard; soft contact lenses may absorb and concentrate irritants. A written policy document, describing the wearing of lenses or restrictions on use, should be created for each workplace or task. Skin protection See Hand protection below ▶ Wear chemical protective gloves, e.g. PVC. Wear safety footwear or safety gumboots, e.g. Rubber The selection of suitable gloves does not only depend on the material, but also on further marks of quality which vary from manufacturer to manufacturer. Where the chemical is a preparation of several substances, the resistance of the glove material can not be calculated in advance and has therefore to be Hands/feet protection checked prior to the application. The exact break through time for substances has to be obtained from the manufacturer of the protective gloves and has to be observed when making a final Personal hygiene is a key element of effective hand care. **Body protection** See Other protection below Overalls PVC Apron.

Some plastic personal protective equipment (PPE) (e.g. gloves, aprons, overshoes) are not recommended as they may produce static

Issue Date: **27/06/2017**Print Date: **06/02/2018**

electricity.

- For large scale or continuous use wear tight-weave non-static clothing (no metallic fasteners, cuffs or pockets).
- Non sparking safety or conductive footwear should be considered. Conductive footwear describes a boot or shoe with a sole made from a conductive compound chemically bound to the bottom components, for permanent control to electrically ground the foot an shall dissipate static electricity from the body to reduce the possibility of ignition of volatile compounds.

Thermal hazards Not Available

Recommended material(s)

GLOVE SELECTION INDEX

Glove selection is based on a modified presentation of the:

"Forsberg Clothing Performance Index".

The effect(s) of the following substance(s) are taken into account in the *computer-generated* selection:

Solvent Plus

Material	CPI
BUTYL	С
BUTYL/NEOPRENE	С
HYPALON	С
NAT+NEOPR+NITRILE	С
NATURAL RUBBER	С
NATURAL+NEOPRENE	С
NEOPRENE	С
NEOPRENE/NATURAL	С
NITRILE	С
NITRILE+PVC	С
PE/EVAL/PE	С
PVA	С
PVC	С
PVDC/PE/PVDC	С
SARANEX-23	С
TEFLON	С
VITON	С
##ethylene glycol monobutyl	ether

^{*} CPI - Chemwatch Performance Index

A: Best Selection

B: Satisfactory; may degrade after 4 hours continuous immersion

C: Poor to Dangerous Choice for other than short term immersion

 $\mbox{NOTE}:$ As a series of factors will influence the actual performance of the glove, a final selection must be based on detailed observation. -

* Where the glove is to be used on a short term, casual or infrequent basis, factors such as "feel" or convenience (e.g. disposability), may dictate a choice of gloves which might otherwise be unsuitable following long-term or frequent use. A qualified practitioner should be consulted.

Respiratory protection

Type A Filter of sufficient capacity. (AS/NZS 1716 & 1715, EN 143:2000 & 149:2001, ANSI Z88 or national equivalent)

Where the concentration of gas/particulates in the breathing zone, approaches or exceeds the "Exposure Standard" (or ES), respiratory protection is required.

Degree of protection varies with both face-piece and Class of filter; the nature of protection varies with Type of filter.

Required Minimum Protection Factor	Half-Face Respirator	Full-Face Respirator	Powered Air Respirator
up to 10 x ES	A-AUS	-	A-PAPR-AUS / Class 1
up to 50 x ES	-	A-AUS / Class 1	-
up to 100 x ES	-	A-2	A-PAPR-2 ^

^ - Full-fac

A(All classes) = Organic vapours, B AUS or B1 = Acid gasses, B2 = Acid gas or hydrogen cyanide(HCN), B3 = Acid gas or hydrogen cyanide(HCN), E = Sulfur dioxide(SO2), G = Agricultural chemicals, K = Ammonia(NH3), Hg = Mercury, NO = Oxides of nitrogen, MB = Methyl bromide, AX = Low boiling point organic compounds(below 65 degC)

Cartridge respirators should never be used for emergency ingress or in areas of unknown vapour concentrations or oxygen content. The wearer must be warned to leave the contaminated area immediately on detecting any odours through the respirator. The odour may indicate that the mask is not functioning properly, that the vapour concentration is too high, or that the mask is not properly fitted. Because of these limitations, only restricted use of cartridge respirators is considered appropriate.

SECTION 9 PHYSICAL AND CHEMICAL PROPERTIES

Information on basic physical and chemical properties

Appearance	Clear flammable liquid with an aromatic solvent odour; does not mix with water.		
Physical state	Liquid	Relative density (Water = 1)	0.87
Odour	Not Available	Partition coefficient n-octanol / water	Not Available
Odour threshold	Not Available	Auto-ignition temperature (°C)	450
pH (as supplied)	Not Applicable	Decomposition temperature	Not Available
Melting point / freezing point (°C)	Not Available	Viscosity (cSt)	Not Available
Initial boiling point and boiling range (°C)	138-175	Molecular weight (g/mol)	Not Applicable
Flash point (°C)	27	Taste	Not Available
Evaporation rate	Not Available	Explosive properties	Not Available
Flammability	Flammable.	Oxidising properties	Not Available
Upper Explosive Limit (%)	Not Available	Surface Tension (dyn/cm or mN/m)	Not Available
Lower Explosive Limit (%)	Not Available	Volatile Component (%vol)	>99
Vapour pressure (kPa)	Not Available	Gas group	Not Available
Solubility in water (g/L)	Immiscible	pH as a solution (1%)	Not Applicable
Vapour density (Air = 1)	>1.0	VOC g/L	Not Available

Issue Date: 27/06/2017
Print Date: 06/02/2018

SECTION 10 STABILITY AND REACTIVITY

Reactivity	See section 7
Chemical stability	 Unstable in the presence of incompatible materials. Product is considered stable. Hazardous polymerisation will not occur.
Possibility of hazardous reactions	See section 7
Conditions to avoid	See section 7
Incompatible materials	See section 7
Hazardous decomposition products	See section 5

SECTION 11 TOXICOLOGICAL INFORMATION

Information on toxicological effects

Evidence shows, or practical experience predicts, that the material produces irritation of the respiratory system, in a substantial number of individuals, following inhalation. In contrast to most organs, the lung is able to respond to a chemical insult by first removing or neutralising the irritant and then repairing the damage. The repair process, which initially evolved to protect mammalian lungs from foreign matter and antigens, may however, produce further lung damage resulting in the impairment of gas exchange, the primary function of the lungs. Respiratory tract irritation often results in an inflammatory response involving the recruitment and activation of many cell types, mainly derived from the vascular system.

Inhalation of vapours may cause drowsiness and dizziness. This may be accompanied by narcosis, reduced alertness, loss of reflexes, lack of coordination and vertigo.

The acute toxicity of inhaled alkylbenzenes is best described by central nervous system depression. As a rule, these compounds may also act as general anaesthetics.

Systemic poisoning produced by general anaesthesia is characterised by lightheadedness, nervousness, apprehension, euphoria, confusion, dizziness, drowsiness, tinnitus, blurred or double vision, vomiting and sensations of heat, cold or numbness, twitching, tremors, convulsions, unconsciousness and respiratory depression and arrest. Cardiac arrest may result from cardiovascular collapse.

Inhalation hazard is increased at higher temperatures.

Inhaled

High inhaled concentrations of mixed hydrocarbons may produce narcosis characterised by nausea, vomiting and lightheadedness. Inhalation of aerosols may produce severe pulmonary oedema, pneumonitis and pulmonary haemorrhage. Inhalation of petroleum hydrocarbons consisting substantially of low molecular weight species (typically C2-C12) may produce irritation of mucous membranes, incoordination, giddiness, nausea, vertigo, confusion, headache, appetite loss, drowsiness, tremors and anaesthetic stupor. Massive exposures may produce central nervous system depression with sudden collapse and deep coma; fatalities have been recorded.

Central nervous system (CNS) depression may include nonspecific discomfort, symptoms of giddiness, headache, dizziness, nausea, anaesthetic effects, slowed reaction time, slurred speech and may progress to unconsciousness. Serious poisonings may result in respiratory depression and may be fatal. Acute effects from inhalation of high concentrations of vapour are pulmonary irritation, including coughing, with nausea; central nervous system depression - characterised by headache and dizziness, increased reaction time, fatigue and loss of co-ordination

Ethylene glycol monobutyl ether (2-butoxyethanol) and its metabolite butoxyacetic acid are haemolytic agents, causing red blood cell destruction.

On the basis of industrial experience and volunteer short-term exposure humans are shown to be less susceptible than experimental animals to exposure. In 8-hour exposures at concentrations of 200 or 100 ppm no objective effects were seen other than raised urinary excretion of the metabolite butoxyacetic acid. No increased osmotic fragility of the red blood cell is observed.

Inhalation of aerosols (mists, fumes), generated by the material during the course of normal handling, may be harmful.

Ingestion

Accidental ingestion of the material may be harmful; animal experiments indicate that ingestion of less than 150 gram may be fatal or may produce serious damage to the health of the individual.

Ingestion of petroleum hydrocarbons may produce irritation of the pharynx, oesophagus, stomach and small intestine with oedema and mucosal ulceration resulting; symptoms include a burning sensation in the mouth and throat. Large amounts may produce narcosis with nausea and vomiting, weakness or dizziness, slow and shallow respiration, swelling of the abdomen, unconsciousness and convulsions. Myocardial injury may produce arrhythmias, ventricular fibrillation and electrocardiographic changes. Central nervous system depression may also occur.

Severe acute exposure to ethylene glycol monobutyl ether, by ingestion, may cause kidney damage, haemoglobinuria, (blood in urine) and is potentially fatal. Considered an unlikely route of entry in commercial/industrial environments The liquid may produce considerable gastrointestinal discomfort and may be harmful or toxic if swallowed. Ingestion may result in nausea, pain and vomiting. Vomit entering the lungs by aspiration may cause potentially lethal chemical pneumonitis

Skin contact with the material may be harmful; systemic effects may result following absorption.

The material produces moderate skin irritation; evidence exists, or practical experience predicts, that the material either

- ▶ produces moderate inflammation of the skin in a substantial number of individuals following direct contact, and/or
- produces significant, but moderate, inflammation when applied to the healthy intact skin of animals (for up to four hours), such inflammation being present twenty-four hours or more after the end of the exposure period.

Skin irritation may also be present after prolonged or repeated exposure; this may result in a form of contact dermatitis (nonallergic). The dermatitis is often characterised by skin redness (erythema) and swelling (oedema) which may progress to blistering (vesiculation), scaling and thickening of the epidermis. At the microscopic level there may be intercellular oedema of the spongy layer of the skin (spongiosis) and intracellular oedema of the epidermis.

Skin Contact

Repeated exposure may cause skin cracking, flaking or drying following normal handling and use.

Open cuts, abraded or irritated skin should not be exposed to this material

The material may accentuate any pre-existing dermatitis condition

Entry into the blood-stream through, for example, cuts, abrasions, puncture wounds or lesions, may produce systemic injury with harmful effects. Examine the skin prior to the use of the material and ensure that any external damage is suitably protected.

Ethylene glycol monobutyl ether (2-butoxyethanol) penetrates the skin easily and toxic effects via this route may be more likely than by inhalation. Percutaneous uptake rate in the guinea pig was estimated to be 0.25 umole/min/cm2.

Aromatic hydrocarbons may produce skin irritation, vasodilation with erythema and changes in endothelial cell permeability. Systemic intoxication, resulting from contact with the light aromatics, is unlikely due to the slow rate of permeation. Branching of the side chain appears to increase percutaneous absorption.

Eye

Evidence exists, or practical experience predicts, that the material may cause severe eye irritation in a substantial number of individuals and/or may produce significant ocular lesions which are present twenty-four hours or more after instillation into the eye(s) of experimental animals. Eye contact may cause significant inflammation with pain. Corneal injury may occur; permanent impairment of vision may result unless treatment is prompt and adequate. Repeated or prolonged exposure to irritants may cause inflammation characterised by a temporary redness (similar to windburn) of the conjunctiva (conjunctivitis); temporary impairment of vision and/or other transient eye damage/ulceration may occur.

Petroleum hydrocarbons may produce pain after direct contact with the eyes. Slight, but transient disturbances of the comeal epithelium may also result. The aromatic fraction may produce irritation and lachrymation.

Chemwatch: 5075-69 Version No: 4.1.1.1

Page 8 of 12 Solvent Plus

Issue Date: 27/06/2017 Print Date: 06/02/2018

When instilled in rabbit eyes ethylene glycol monobutyl ether produced pain, conjunctival irritation, and transient corneal injury.

The liquid produces a high level of eye discomfort and is capable of causing pain and severe conjunctivitis. Corneal injury may develop, with possible permanent impairment of vision, if not promptly and adequately treated.

Long-term exposure to respiratory irritants may result in disease of the airways involving difficult breathing and related systemic problems. Limited evidence suggests that repeated or long-term occupational exposure may produce cumulative health effects involving organs or biochemical

There is some evidence that human exposure to the material may result in developmental toxicity. This evidence is based on animal studies where effects have been observed in the absence of marked maternal toxicity, or at around the same dose levels as other toxic effects but which are not secondary non-specific consequences of the other toxic effects.

Exposure to the material may cause concerns for human fertility, on the basis that similar materials provide some evidence of impaired fertility in the absence of toxic effects, or evidence of impaired fertility occurring at around the same dose levels as other toxic effects, but which are not a secondary non-specific consequence of other toxic effects.

Chronic

Repeated or prolonged exposure to mixed hydrocarbons may produce narcosis with dizziness, weakness, irritability, concentration and/or memory loss, tremor in the fingers and tongue, vertigo, olfactory disorders, constriction of visual field, paraesthesias of the extremities, weight loss and anaemia and degenerative changes in the liver and kidney. Chronic exposure by petroleum workers, to the lighter hydrocarbons, has been associated with visual disturbances, damage to the central nervous system, peripheral neuropathies (including numbness and paraesthesias), psychological and neurophysiological deficits, bone marrow toxicities (including hypoplasia possibly due to benzene) and hepatic and renal involvement. Chronic dermal exposure to petroleum hydrocarbons may result in defatting which produces localised dermatoses. Surface cracking and erosion may also increase susceptibility to infection by microorganisms.

On the basis, primarily, of animal experiments, concern has been expressed that the material may produce carcinogenic or mutagenic effects; in respect of the available information, however, there presently exists inadequate data for making a satisfactory assessment.

Prolonged or repeated contact with xylenes may cause defatting dermatitis with drying and cracking. Chronic inhalation of xylenes has been associated with central nervous system effects, loss of appetite, nausea, ringing in the ears, irritability, thirst anaemia, mucosal bleeding, enlarged liver and hyperplasia. Exposure may produce kidney and liver damage. In chronic occupational exposure, xylene (usually mix ed with other solvents) has produced irreversible damage to the central nervous system and ototoxicity (damages hearing and increases sensitivity to noise), probably due to neurotoxic mechanisms. Exposure to the material for prolonged periods may cause physical defects in the developing embryo (teratogenesis). Chronic solvent inhalation exposures may result in nervous system impairment and liver and blood changes. [PATTYS]

	TOXICITY	IRRITATION
Solvent Plus	Not Available	Not Available
	TOXICITY	IRRITATION
	Dermal (rabbit) LD50: >1700 mg/kg ^[2]	Eye (human): 200 ppm irritant
xylene	Inhalation (rat) LC50: 4994.295 mg/l/4h ^[2]	Eye (rabbit): 5 mg/24h SEVERE
	Oral (rat) LD50: 4300 mg/kg ^[2]	Eye (rabbit): 87 mg mild
		Skin (rabbit):500 mg/24h moderate
	TOXICITY	IRRITATION
naphtha petroleum, light	Dermal (rabbit) LD50: >1900 mg/kg ^[1]	Not Available
aromatic solvent	Inhalation (rat) LC50: >7331.62506 mg/l/8h*[2]	
	Oral (rat) LD50: >4500 mg/kg ^[1]	
	TOXICITY	IRRITATION
	dermal (rat) LD50: >2000 mg/kg ^[1]	Eye (rabbit): 100 mg SEVERE
ethylene glycol monobutyl ether	Inhalation (rat) LC50: 449.48655 mg/l/4H ^[2]	Eye (rabbit): 100 mg/24h-moderate
	Oral (rat) LD50: 250 mg/kg ^[2]	Skin (rabbit): 500 mg, open; mild

Legend:

1. Value obtained from Europe ECHA Registered Substances - Acute toxicity 2.* Value obtained from manufacturer's SDS. Unless otherwise specified data extracted from RTECS - Register of Toxic Effect of chemical Substances

for petroleum:

Asthma-like symptoms may continue for months or even years after exposure to the material ceases. This may be due to a non-allergenic condition known as reactive airways dysfunction syndrome (RADS) which can occur following exposure to high levels of highly irritating compound. Key criteria for the diagnosis of RADS include the absence of preceding respiratory disease, in a non-atopic individual, with abrupt onset of persistent asthma-like symptoms within minutes to hours of a documented exposure to the irritant. A reversible airflow pattern, on spirometry, with the presence of moderate to severe bronchial hyperreactivity on methacholine challenge testing and the lack of minimal lymphocytic inflammation, without eosinophilia, have also been included in the criteria for diagnosis of RADS.

Solvent Plus

This product contains benzene which is known to cause acute myeloid leukaemia and n-hexane which has been shown to metabolize to compounds which are neuropathic

This product contains toluene. There are indications from animal studies that prolonged exposure to high concentrations of toluene may lead to hearing

This product contains ethyl benzene and naphthalene from which there is evidence of tumours in rodents

Carcinogenicity: Inhalation exposure to mice causes liver tumours, which are not considered relevant to humans.

The material may cause skin irritation after prolonged or repeated exposure and may produce a contact dermatitis (nonallergic). This form of dermatitis is often characterised by skin redness (erythema) and swelling the epidermis. Histologically there may be intercellular oedema of the spongy layer (spongiosis) and intracellular oedema of the epidermis.

NAPHTHA PETROLEUM. LIGHT AROMATIC SOLVENT

For trimethylbenzenes:

Absorption of 1,2,4-trimethylbenzene occurs after oral, inhalation, or dermal exposure. Occupationally, inhalation and dermal exposures are the most important routes of absorption although systemic intoxication from dermal absorption is not likely to occur due to the dermal irritation caused by the chemical prompting quick removal. Following oral administration of the chemical to rats, 62.6% of the dose was recovered as urinary metabolites indicating substantial absorption . 1,2,4-Trimethylbenzene is lipophilic and may accumulate in fat and fatty tissues.

For C9 aromatics (typically trimethylbenzenes - TMBs)

Chemwatch: 5075-69 Page 9 of 12 Version No: 4.1.1.1

Solvent Plus

Issue Date: 27/06/2017 Print Date: 06/02/2018

Acute Toxicity Acute toxicity studies (oral, dermal and inhalation routes of exposure) have been conducted in rats using various solvent products containing predominantly mixed C9 aromatic hydrocarbons (CAS RN 64742-95-6). Inhalation LC50's range from 6,000 to 10,000 mg/m 3 for C9 aromatic naphtha and 18,000 to 24,000 mg/m3 for 1,2,4 and 1,3,5-TMB, respectively. A rat oral LD50 reported for 1,2,4-TMB is 5 grams/kg bw and a rat dermal LD50 for the C9 aromatic naphtha is >4 ml/kg bw. These data indicate that C9 aromatic solvents show that LD50/LC50 values are greater than limit doses for acute toxicity studies established under OECD test guidelines Inhalation (rat) TCLo: 1320 ppm/6h/90D-l * [Devoe] The material may cause skin irritation after prolonged or repeated exposure and may produce a contact dermatitis (nonallergic). This form of dermatitis is often characterised by skin redness (erythema) and swelling epidermis. Histologically there may be intercellular oedema of the spongy layer (spongiosis) and intracellular oedema of the epidermis. For ethylene glycol monoalkyl ethers and their acetates (EGMAEs): Typical members of this category are ethylene glycol propylene ether (EGPE), ethylene glycol butyl ether (EGBE) and ethylene glycol hexyl ether (EGHE) and their acetates. EGMAEs are substrates for alcohol dehydrogenase isozyme ADH-3, which catalyzes the conversion of their terminal alcohols to aldehydes (which are transient metabolites). Further, rapid conversion of the aldehydes by aldehyde dehydrogenase produces alkoxyacetic acids, which are the predominant ETHYLENE GLYCOL urinary metabolites of mono substituted alvcol ethers. MONOBUTYL ETHER Acute Toxicity: Oral LD50 values in rats for all category members range from 739 (EGHE) to 3089 mg/kg bw (EGPE), with values increasing with decreasing molecular weight. For ethylene alvcol: Ethylene glycol is quickly and extensively absorbed through the gastrointestinal tract. Limited information suggests that it is also absorbed through the respiratory tract; dermal absorption is apparently slow. Following absorption, ethylene glycol is distributed throughout the body according to total body water. In most mammalian species, including humans, ethylene glycol is initially metabolised by alcohol. NOTE: Changes in kidney, liver, spleen and lungs are observed in animals exposed to high concentrations of this substance by all routes. ** ASCC (NZ) SDS Solvent Plus & ETHYLENE The material may produce severe irritation to the eye causing pronounced inflammation. Repeated or prolonged exposure to irritants may produce GLYCOL MONOBUTYL ETHER Exposure of pregnant rats to ethylene glycol monobutyl ether (2-butoxyethanol) at 100 ppm or rabbits at 200 ppm during organogenesis resulted in maternal Solvent Plus & ETHYLENE toxicity and embryotoxicity including a decreased number of viable implantations per litter. Slight foetoxicity in the form of poorly ossified or unossified **GLYCOL MONOBUTYL ETHER** skeletal elements was also apparent in rats. Teratogenic effects were not observed in other species. At least one researcher has stated that the reproductive effects were less than that of other monoalkyl ethers of ethylene glycol. **Acute Toxicity** Carcinogenicity 0 Skin Irritation/Corrosion • Reproductivity Serious Eye Damage/Irritation STOT - Single Exposure V

Legend:

Aspiration Hazard

STOT - Repeated Exposure

Z – Data available but does not fill the criteria for classification Data available to make classification

N - Data Not Available to make classification

0

V

SECTION 12 ECOLOGICAL INFORMATION

Respiratory or Skin

sensitisation

Mutagenicity

0

0

Toxicity

Solvent Plus	ENDPOINT	TEST DURATION (HR)	SPECIES	VALUE	SOURCE
	Not Available	Not Available	Not Available	Not Available	Not Available
xylene	ENDPOINT	TEST DURATION (HR)	SPECIES	VALUE	SOURCE
	LC50	96	Fish	2.6mg/L	2
	EC50	48	Crustacea	>3.4mg/L	2
	EC50	72	Algae or other aquatic plants	4.6mg/L	2
	NOEC	73	Algae or other aquatic plants	0.44mg/L	2
	ENDPOINT	TEST DURATION (HR)	SPECIES	VALUE	SOURCE
	EC50	48	Crustacea	=6.14mg/L	1
naphtha petroleum, light aromatic solvent	EC50	72	Algae or other aquatic plants	3.29mg/L	1
uromado corrent	EC10	72	Algae or other aquatic plants	1.13mg/L	1
	NOEC	72	Algae or other aquatic plants	=1mg/L	1
	ENDPOINT	TEST DURATION (HR)	SPECIES	VALUE	SOURCE
	LC50	96	Fish	1250mg/L	4
ethylene glycol monobutyl ether	EC50	48	Crustacea	>1000mg/L	4
	NOEC	96	Crustacea	1000mg/L	4

Legend:

Extracted from 1. IUCLID Toxicity Data 2. Europe ECHA Registered Substances - Ecotoxicological Information - Aquatic Toxicity 3. EPIWIN Suite V3.12 (QSAR) - Aquatic Toxicity Data (Estimated) 4. US EPA, Ecotox database - Aquatic Toxicity Data 5. ECETOC Aquatic Hazard Assessment Data 6. NITE (Japan) - Bioconcentration Data 7. METI (Japan) - Bioconcentration Data 8. Vendor Data

Toxic to aquatic organisms, may cause long-term adverse effects in the aquatic environment.

Do NOT allow product to come in contact with surface waters or to intertidal areas below the mean high water mark. Do not contaminate water when cleaning equipment or disposing of equipment wash-waters

Issue Date: **27/06/2017**Print Date: **06/02/2018**

Wastes resulting from use of the product must be disposed of on site or at approved waste sites.

When spilled this product may act as a typical oil, causing a film, sheen, emulsion or sludge at or beneath the surface of the body of water. The oil film on water surface may physically affect the aquatic organisms, due to the interruption of the

oxygen transfer between the air and the water

Oils of any kind can cause:

- reducing of water-fowl due to lack of buoyancy, loss of insulating capacity of feathers, starvation and vulnerability to predators due to lack of mobility
- I lethal effects on fish by coating gill surfaces, preventing respiration
- asphyxiation of benthic life forms when floating masses become engaged with surface debris and settle on the bottom and
- adverse aesthetic effects of fouled shoreline and beaches

In case of accidental releases on the soil, a fine film is formed on the soil, which prevents the plant respiration process and the soil particle saturation. It may cause deep water infestation. Within an aromatic series, acute toxicity increases with increasing alkyl substitution on the aromatic nucleus. For example, there is an increase in toxicity as alkylation of the naphthalene structure increases. The order of most toxic to least in a study using grass shrimp (Palaemonetes pugio) and brown shrimp (Penaeus aztecus) was dimethylnaphthalenes > methylnaphthalenes > naphthalenes.

Studies conclude that the toxicity of an oil appears to be a function of its di-aromatic and tri-aromatic hydrocarbons, which includes three-ring hydrocarbons such as phenanthrene. For ethylene glycol monoalkyl ethers and their acetates:

Members of this category include ethylene glycol propyl ether (EGPE), ethylene glycol butyl ether (EGBE) and ethylene glycol hexyl ether (EGHE)

Environmental fate:

The ethers, like other simple glycol ethers possess no functional groups that are readily subject to hydrolysis in the presence of waters. The acetates possess an ester group that hydrolyses in neutral ambient water under abiotic conditions.

Level III fugacity modeling indicates that category members, when released to air and water, will partition predominately to water and, to a lesser extent, to air and soil. Estimates of soil and sediment partition coefficients (Kocs ranging from 1- 10) suggest that category members would exhibit high soil mobility.

For xylenes:

log Koc : 2.05-3.08 Koc : 25.4-204 Half-life (hr) air : 0.24-42

Half-life (hr) H2O surface water : 24-672 Half-life (hr) H2O ground : 336-8640 Half-life (hr) soil : 52-672 Henry's Pa m3 /mol: 637-879 Henry's atm m3 /mol: 7.68E-03 BOD 5 if unstated: 1.4,1% COD : 2.56,13%

COD: 2.56,13% ThOD: 3.125 BCF: 23 log BCF: 1.17-2.41 Environmental Fate

Terrestrial fate:: Measured Koc values of 166 and 182, indicate that 3-xylene is expected to have moderate mobility in soil. Volatilisation of p-xylene is expected to be important from moist soil surfaces given a measured Henry's Law constant of 7.18x10-3 atm-cu m/mole. The potential for volatilisation of 3-xylene from dry soil surfaces may exist based on a measured vapor pressure of 8.29 mm Hg. p-Xylene may be degraded during its passage through soil).

For glycol ethers:

Environmental fate:

Ether groups are generally stable to hydrolysis in water under neutral conditions and ambient temperatures. OECD guideline studies indicate ready biodegradability for several glycol ethers although higher molecular weight species seem to biodegrade at a slower rate. No glycol ethers that have been tested demonstrate marked resistance to biodegradative processes. Upon release to the atmosphere by evaporation, high boiling glycol ethers are estimated to undergo photodegradation (atmospheric half lives = 2.4-2.5 hr).

DO NOT discharge into sewer or waterways

Persistence and degradability

Ingredient	Persistence: Water/Soil	Persistence: Air
xylene	HIGH (Half-life = 360 days)	LOW (Half-life = 1.83 days)
ethylene glycol monobutyl ether	LOW (Half-life = 56 days)	LOW (Half-life = 1.37 days)

Bioaccumulative potential

Ingredient	Bioaccumulation
xylene	MEDIUM (BCF = 740)
ethylene glycol monobutyl ether	LOW (BCF = 2.51)

Mobility in soil

Ingredient	Mobility
ethylene glycol monobutyl ether	HIGH (KOC = 1)

SECTION 13 DISPOSAL CONSIDERATIONS

Waste treatment methods

Product / Packaging disposal

- ► Containers may still present a chemical hazard/ danger when empty.
- ▶ Return to supplier for reuse/ recycling if possible.

Otherwise:

• If container can not be cleaned sufficiently well to ensure that residuals do not remain or if the container cannot be used to store the same product, then puncture containers, to prevent re-use, and bury at an authorised landfill.

Legislation addressing waste disposal requirements may differ by country, state and/ or territory. Each user must refer to laws operating in their area. In

▶ Where possible retain label warnings and SDS and observe all notices pertaining to the product.

some areas, certain wastes must be tracked.

A Hierarchy of Controls seems to be common - the user should investigate:

• Reduction

- A
- ▶ Reuse
- ► Recycling
- Disposal (if all else fails)

This material may be recycled if unused, or if it has not been contaminated so as to make it unsuitable for its intended use

Chemwatch: 5075-69 Version No: 4.1.1.1

Solvent Plus

Issue Date: 27/06/2017 Print Date: 06/02/2018

- DO NOT allow wash water from cleaning or process equipment to enter drains.
 It may be necessary to collect all wash water for treatment before disposal.
- ▶ In all cases disposal to sewer may be subject to local laws and regulations and these should be considered first.
- ▶ Where in doubt contact the responsible authority.
- ► Recycle wherever possible.
- ► Consult manufacturer for recycling options or consult local or regional waste management authority for disposal if no suitable treatment or disposal facility can be identified.
- Dispose of by: burial in a land-fill specifically licensed to accept chemical and / or pharmaceutical wastes or Incineration in a licensed apparatus (after admixture with suitable combustible material).
- ► Decontaminate empty containers.

SECTION 14 TRANSPORT INFORMATION

Labels Required

Marine Pollutant

HAZCHEM

•3Y

Land transport (ADG)

zana transport (7120)			
UN number	1993		
UN proper shipping name	FLAMMABLE LIQUID, N.O.S. (contains xylene and naphtha petroleum, light aromatic solvent)		
Transport hazard class(es)	Class 3 Subrisk Not Applicable		
Packing group			
Environmental hazard	Environmentally hazardous		
Special precautions for user	Special provisions 223 274 Limited quantity 5 L		

Air transport (ICAO-IATA / DGR)

UN number	1993			
UN proper shipping name	Flammable liquid, n.o.s. * (contains xylene and naphtha petroleum, light aromatic solvent)			
Transport hazard class(es)	ICAO/IATA Class ICAO / IATA Subrisk ERG Code	3 Not Applicable 3L		
Packing group				
Environmental hazard	Environmentally hazardou	JS		
Special precautions for user	Cargo Only Maximum Passenger and Cargo Passenger and Cargo Passenger and Cargo	•		

Sea transport (IMDG-Code / GGVSee)

UN number	1993		
UN proper shipping name	FLAMMABLE LIQUID, N.O.S. (contains xylene and naphtha petroleum, light aromatic solvent)		
Transport hazard class(es)	IMDG Class 3 IMDG Subrisk Not Applicable		
Packing group			
Environmental hazard	Marine Pollutant		
Special precautions for user	EMS Number F-E , S-E Special provisions 223 274 955		

Version No: 4.1.1.1 Solvent Plus

Issue Date: **27/06/2017**Print Date: **06/02/2018**

Limited Quantities

51

Transport in bulk according to Annex II of MARPOL and the IBC code

Not Applicable

SECTION 15 REGULATORY INFORMATION

Safety, health and environmental regulations / legislation specific for the substance or mixture

XYLENE(1330-20-7) IS FOUND ON THE FOLLOWING REGULATORY LISTS

Australia Exposure Standards

Australia Inventory of Chemical Substances (AICS)

Australia Hazardous Substances Information System - Consolidated Lists

International Agency for Research on Cancer (IARC) - Agents Classified by the IARC

Monographs

NAPHTHA PETROLEUM, LIGHT AROMATIC SOLVENT(64742-95-6.) IS FOUND ON THE FOLLOWING REGULATORY LISTS

Australia Hazardous Substances Information System - Consolidated Lists

Australia Inventory of Chemical Substances (AICS)

ETHYLENE GLYCOL MONOBUTYL ETHER(111-76-2) IS FOUND ON THE FOLLOWING REGULATORY LISTS

Australia Exposure Standards

Australia Inventory of Chemical Substances (AICS)

Australia Hazardous Substances Information System - Consolidated Lists

International Agency for Research on Cancer (IARC) - Agents Classified by the IARC Monographs

National Inventory	Status	
Australia - AICS	Υ	
Canada - DSL	Υ	
Canada - NDSL	N (xylene; naphtha petroleum, light aromatic solvent; ethylene glycol monobutyl ether)	
China - IECSC	Υ	
Europe - EINEC / ELINCS / NLP	Υ	
Japan - ENCS	Υ	
Korea - KECI	Y	
New Zealand - NZIoC	Υ	
Philippines - PICCS	Y	
USA - TSCA	Υ	
Legend:	Y = All ingredients are on the inventory N = Not determined or one or more ingredients are not on the inventory and are not exempt from listing(see specific ingredients in brackets)	

SECTION 16 OTHER INFORMATION

Other information

Ingredients with multiple cas numbers

Name	CAS No
naphtha petroleum, light aromatic solvent	64742-95-6., 25550-14-5.

Classification of the preparation and its individual components has drawn on official and authoritative sources as well as independent review by the Chemwatch Classification committee using available literature references.

The SDS is a Hazard Communication tool and should be used to assist in the Risk Assessment. Many factors determine whether the reported Hazards are Risks in the workplace or other settings. Risks may be determined by reference to Exposures Scenarios. Scale of use, frequency of use and current or available engineering controls must be considered.

Definitions and abbreviations

 ${\sf PC-TWA: Permissible \ Concentration-Time \ Weighted \ Average}$

 ${\sf PC-STEL} : {\sf Permissible Concentration-Short Term Exposure Limit}$

IARC: International Agency for Research on Cancer

ACGIH: American Conference of Governmental Industrial Hygienists

STEL: Short Term Exposure Limit

TEEL: Temporary Emergency Exposure Limit $_{\circ}$

IDLH: Immediately Dangerous to Life or Health Concentrations

OSF: Odour Safety Factor

NOAEL :No Observed Adverse Effect Level

LOAEL: Lowest Observed Adverse Effect Level

TLV: Threshold Limit Value

LOD: Limit Of Detection

OTV: Odour Threshold Value

BCF: BioConcentration Factors

BEI: Biological Exposure Index

This document is copyright.

Apart from any fair dealing for the purposes of private study, research, review or criticism, as permitted under the Copyright Act, no part may be reproduced by any process without written permission from CHEMWATCH.

TEL (+61 3) 9572 4700